The generator matrix 1 0 1 1 X^2 1 1 1 X^2+X 1 1 X 1 1 0 1 1 X 1 1 1 X^3+X^2+X X^3+X^2+X 1 1 1 X^3+X^2 1 1 1 1 1 X^3+X^2 X^2+X 1 X^3+X^2 1 1 1 0 1 0 X X^3 1 X 1 X 1 1 1 0 1 1 X^2+X 1 X^2+X+1 X^2 X^3+1 1 X^3+X X+1 1 X^2 X+1 1 X^3+X^2+X+1 X^3 1 0 X^2+1 X^3 1 1 X^3 X^3 X^3+X^2+1 1 X^3+X X^3+X X^2+X X X^3+X^2+X+1 1 1 X^3+X+1 1 X X^3+X^2+1 1 1 X+1 1 X^2 0 X^2+X 1 1 X^3+X^2+X X^2+1 X^2+1 X^2+X 0 0 X 0 X^3+X X X^3+X X^3 0 X^3+X^2+X X^3 X^3+X X^3+X^2+X X^2+X X^3+X^2 X^3+X^2 X^2 X^3+X^2+X X^2+X X^3+X^2+X X^3+X^2 X X^3+X^2 X^3+X 0 X^2 X^3+X^2+X X^3 X^3+X^2+X X^2 X^2 X^2+X X^3 0 X^3 X^3+X X X^3+X 0 X^3+X^2+X X^2 X^2 X^2+X X X^3 X^3+X^2 X X^2+X 0 X^2 X^3+X^2 0 0 0 X^3 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 X^3 0 0 0 X^3 0 0 X^3 0 X^3 0 X^3 X^3 0 0 X^3 X^3 0 0 X^3 0 X^3 X^3 X^3 X^3 0 0 X^3 X^3 0 0 0 0 X^3 X^3 0 0 0 generates a code of length 51 over Z2[X]/(X^4) who´s minimum homogenous weight is 47. Homogenous weight enumerator: w(x)=1x^0+164x^47+509x^48+582x^49+687x^50+572x^51+498x^52+376x^53+349x^54+172x^55+111x^56+30x^57+18x^58+20x^59+4x^61+1x^62+1x^64+1x^66 The gray image is a linear code over GF(2) with n=408, k=12 and d=188. This code was found by Heurico 1.16 in 0.234 seconds.